
Matts Quick Guide to 
Functions

For Dan



Introduction

Functions are useful subroutines that can be referenced multiple times in the code. We use functions as a 

way of saving space by not having to repeat code that would otherwise need to be rewritten multiple times. 

We will analyse this function for the remainder of this lesson



What This Function Does

This function takes in two numbers, numberOne and numberTwo, and returns the number that is larger. More 

importantly though let's discuss what ANY function does. 



The Generalized Function

A function starts with a Type, which defines what the expected Return result will be. This type can (in Java) 

be void, int, float, double, Object and more. Object can be any Java Object, which includes String or any class 

Objects you create. The Parameter is a variable you pass to the function to typically evaluate. A function can 

have any number of Parameters. The Return statement is what the function will send back to wherever it 

was called



The Function Header

The start of the function is its type int. This means the function is expected to return an int. The function also 

has two parameters, an int called numberOne and numberTwo. These are our variables that we use in the 

function to make it dynamic. By dynamic we mean that the function can perform a process on these inputs to 

give us desired output. These Parameters have No Value on their own and should be treated as placeholders 

for when the function is called.



The Function Body

The body of the function contains our code to test. This code checks if our parameter numberOne is greater 

than numberTwo, otherwise it Returns numberTwo. The body of a function can be anything, but it must 

Return a variable that is the same Type as our function. Hence, in this situation since our function is of Type 

int and our Parameters are of Type int, we can return one of them as a result. 



Advanced Function Topics

Functions can also Return a special type called void. void functions do not need to return a value, and can 

therefore perform tasks in code that normally wouldn’t return anything. A common use of this is printing 

data out, since we would want to call that function, but not expect an explicit output. 

Note in this example we have a function 
with no Parameters or Return, but it is 
still a valid function! It would print out 0 
through 9 to the console.



Advanced Function Topics 2

Functions can do very complex tasks to specific parameters, specifically if those parameters are Passed By 

Reference instead of Passed By Value. These two concepts are important, so lets cover both separately to 

keep things clean. 

These two functions do two 
very different things!



Pass By Value

The concept of Passing By Value implies that the Parameter we are passing is just a value. By this we mean it 

is essentially a Copy of whatever we used as a parameter. Assume we give our function a int of value 300, 

when we run this function, our int will be unaffected, since it only gives a copy of itself to the function. All 

Primitive Types (int, double, float, char, short, long, etc) are Passed By Value. 

Unsure what will happen to your variable? 
Always ask first, “Is this a Primitive Type?” 
If still unsure, just print out your variable 
before and after!



Pass By Reference

Pass By Reference is when we pass the actual Parameter and NOT a copy. This is the default in Java for 

Objects and CANNOT be changed! This means whatever is changed in the function will reflect in the object 

Outside the function. Objects are typically anything that isn’t a Primitive, and are most commonly what a 

Class would be used for. A common example is the Car Object example, which you can look up online. 

This simple function actually changes out 
Objects value! This can cause a massive 
headache if done by accident! When 
passing an Object, triple check!



Advanced Function Topics 3

As a final regard, it’s important to know what the difference between a Function and a Method is. While they 

are used the same way, their context is different. A Function is typically not associated with a class, and can 

be called during execution of a program at any time, within the Scope of the code. Scope can be thought of 

as the current view of your program. If you need help on Scope contact me. 

Methods are functions for an Object and are typically called using the syntax obj.method()

Using Methods is powerful because methods can manipulate Object Variables. A quick example of Methods 

is on the next slide.



Method Example

The Method setModel uses a Parameter called 

model, but in our Object we also have a variable 

called model. Methods can reference Object 

Variables by using the this keyword. When invoking 

this it’s like saying, “Use this objects variable.”

If you haven’t learned about Classes and Objects, 

this is a crucial part.



That’s All

You now have the core of a Function. It is a Subroutine that can handle specific code, and we use Parameters 

to make our function dynamic, that way it can be used for several different operations. We can get a Return 

value from our function which we can use for further processing. 

Functions are important for making code smaller but not having to retype the same code over and over every 

time we want to reference it. Use them wisely and you’ll be typing clean, understandable, non Italian Pasta 

Dish based code!


