
The basics of Algorithms in
C++

Nodes, Lists, and Data Structures

The Basic Linked List

All linked lists are built of nodes, these nodes are what we will look at first. A
normal node consists of some data, and the next node in sequence. You can think
of these as individual containers for data in the list.

Each node (A,B,C and D)
contain some data and point to
the next node in sequence.
The start is called the Head.
The final node (The Tail) points
to NULL, in C++ a nullptr.

Node Code; Entirely

Here is a base node class. We will chop
up each line of this and discuss what it
means. The simplest thing to start with
is that we are declaring a class.
Classes in C++ are just modern structs,
and can be used in similar ways. The
most important thing to remember is
that when instantiating a class, it
returns a pointer to the new object.

class listNode{
public:
int data;
listNode* next;
//methods
listNode(int newData){

this->data = newData;
this->next = nullptr;

}
};

Variables in the class

Let’s focus only on these lines. As we
know from the previous slide, the first
line is declaring the class. Public
designates that the below variables and
methods are accessible outside the
scope of the class. Data is obviously the
data we are storing in the node. Next is
important, it is a pointer to the next
node in sequence.

class listNode{
public:
int data;
listNode* next;
….

Public defines the data as accessible with syntax
like thisNode->data

Data is our data, an int in this case

listNode* next is our pointer to the next node

About Pointers

Pointers are the most important part of all data structures you’ll learn. When you
declare a pointer variable with * it does not use up memory. When you initialize a
class using a line like: MyClass* test = new MyClass(); you’ll notice that you
declare it as a pointer. This is because a class is just a fancy struct. You don’t
need to use malloc or anything as it does it automatically. Like all heap memory
objects though it does not free itself, therefore you will need to use something
like delete to free the memory that the object uses. If this isn’t done, the program
will have a memory leak.

The Constructor

The name of the class and any
variables you want it to be initialized
with are done in the constructor. We
also use this to define our variables
from before. Notice how here we define
our data, but we set next to be a
nullptr. A nullptr is essentially NULL,
but for pointers. It’s good practice to use
this over NULL.

listNode(int newData){
this->data = newData;
this->next = nullptr;

}

It’s important that anything that needs to be
initialized for a class is done in the constructor.
Failure to do so can lead to difficult to debug
Segmentation Faults, which are the leading cause
of dropping out since trade schools.

Applying Nodes to a Linked List

A linked list is the simplest application of our nodes. Each node points to the next
node in sequence. How you use the Linked List is what defines its application. For
example, if you add all new nodes to the front, and only allow retrieval of data from
the first node, then you’ve effectively made a Stack. Likewise, if you allow adding
data to the front, but only retrieve data from the end, then you’ve made a Queue.

It’s important to know the application, but it’s more important to know how to
design your node.

Printing Data from a Node

Below is a print method. We access data in the method using this and ->. This
simply refers to the object itself. -> is a pointer arrow and it is how we retrieve
data from a pointer. Since this is a pointer to itself, we must use the arrow.
Anything after the arrow is just data from our object, be it variables or methods.

Ignore the ofstream& we will cover this later

void printNode(std::ofstream& output){
if(this->next == nullptr){

output<<"(nodes data: "<<this->data<<", nexts data: NULL)\n";
}
else{

output<<"(nodes data: "<<this->data<<", nexts data: "<<this->next->data<<")\n";
}

}

Various Node Applications

Linked Lists, Stacks, Queues, Binary Trees, Quad Trees.

The applications are broad since a node itself is just a way of saying “I have this
data, here’s where you can go next for more.”

Nodes are limited though. While great for storing data, they have limited
functionality alone. The algorithm that defines their sequence (i.e. what’s next) is
what gives the algorithm purpose.

Review of What We Learned

We learned about basic node structure. How the Node class is created and what
each part of it does. If you want to review classes in C++, you can click this link.

We reviewed pointers, and how they are used in this application. If you want an in
depth review of pointers watch this video.

Next we will look at a Stack Class and show how it is created. First we will go
over what we need, then implement it.

https://www.w3schools.com/cpp/cpp_classes.asp
https://www.youtube.com/watch?v=iChalAKXffs

Stacks and What We Will Need

A stack is the most basic data structure. It takes in a value and pushes it on top.
When we want to retrieve a value, we can only take from that top, so we pop it
back out. This behavior is known as Last In First Out(LIFO) since the last value
we add is the first to be removed.

All we need for a stack is it to follow this behavior, so let’s get to defining our stack.

Stack variables

Fortunately the only variable we need to
define for a stack is the top node. This
node will always be at the top, and all
new nodes are added after it. We set it
to some dummy value that we can
easily identify.

class LLStack{
public:
listNode* top;
LLStack(){

this->top = new listNode(-99999);
}
…

The Push Method

To push a new node, we first must give
it a node, which is what is in our method
header. We must check for an edge
case, where our node is the first node in
the stack. We find this out by checking if
top’s next is a nullptr if it is, then our
new node will not have a next.
Otherwise we set our new nodes next
to top’s next, then top’s next to our
node.

void push(listNode* node){
if(this->top->next == nullptr){

//empty list add new node
this->top->next = node;

}
else{

node->next = this->top->next;
this->top->next = node;

}
}

Our if/else statement saves us from our edge case.
The next is accessed using pointer arrows since
our node and this are both pointers.

The Helpful isEmpty Method

Sometimes we will want to know if our
stack is empty, that way we can make
decisions based on special cases. We
know that our stack is empty if the next
node after top is nullptr. We simply
check for this and return whether if it’s
true or false. Get used to it, almost
every data structure will have to be
checked if empty or not.

bool isEmpty(){
if(this->top->next == nullptr){

return true;
}
return false;

}

Apply yourself! Go back to the previous slide and
use isEmpty() to simplify our if statement condition.

The Pop Method

The pop method will return whatever
node we remove. If our stack is empty,
we return a nullptr. If there is data,
since a stack is a LIFO structure, we
want to remove and return the node
right after top. Our temp node is set to
the node after top. Top’s next is then
set to the node after it, or next’s next.
Finally we return temp.

listNode* pop(){
if(this->isEmpty()){

return nullptr;
}
else{

listNode* temp = this->top->next;
this->top->next = this->top->next->next;
return temp;

}
}

It’s important to make sure your assignment is
correct, as failure to do so can easily lead to
memory leaks. If we were to just take the data from
this node, it would be necessary to delete it
afterwards to prevent a leak.

The Stack, Conclusions

As you can see, with just 3 methods we have created a stack. Being the most
simple, it makes sense that it wouldn’t be hard.

As practice you should try implementing it entirely, and running it with some
sample data. Click this link to learn about input streams and output streams, an
important part in testing since it easily lets you input data.

https://www.tutorialspoint.com/cplusplus/cpp_files_streams.htm

Beyond The Stack

Everything can be simplified down to this: Determine the structure for your node,
then design how the nodes are applied. It’s like building a container and then
building the facility that stores it.

Everything though is just a node and a data structure for that node. How you solve
the problem is up to you. The key is understanding the basics. Go over it how we
did with the stack. We found what we need, what we want to store, and how we
want to advance it.

Good Luck with your
assignment.
For More:
https://matthewflammia.xyz/

For Music:
https://open.spotify.com/playlist/4bhwDm3U170v7SQB2JEz6h?si=cb523378a54f44a5

https://matthewflammia.xyz/
https://open.spotify.com/playlist/4bhwDm3U170v7SQB2JEz6h?si=cb523378a54f44a5

