
Bloom Filters in Distributed 
Systems

Matthew Flammia and Gildian Gonzales



Introduction

We will discuss what a Bloom Filter is, and one application of it in a distributed 
system. 

Bloom Filters have many applications, so we will discuss Burton Howard Bloom’s 
original concept first, then cover how it can be used in a Set Reconciliation in a 
distributed system.



What is a Bloom Filter?

A Bloom Filter is a probabilistic data structure where n elements are run through k 
hashing algorithms, and indexed into an array of length m, when an index is hit, 
we change its value from 0 to 1. After doing this for all n elements, we get our 
populated Bloom Filter.

In this example, m is 12 and k is 3



How can we use a Bloom Filter for Membership?

After populating our Bloom Filter, we can check the membership of an element by 
running it through our hashing algorithms, if all indexes hit are 1’s, then we know 
our element is a part of our set. Any 0 would indicate that the element does not 
exist in the set. A problem we run into though is there is a false positive rate, but 
the benefit is that we will never have a false negative. The query time is log2(1/𝜀)



The Disadvantage of a Bloom Filter

As stated before, we encounter the issue of a false positive while running the 
Bloom Filter. This can cause us to accidentally assume membership when there 
isn’t, causing any subsequent search for an element to fail. This is unavoidable, 
but can be calculated with this equation to our preference.

m is our array size, k is our amount of hash functions, n is the number of elements

Let’s call this rate 𝜀
A Bloom Filter of size 10 
with 3 hash functions 
and 4 elements has a 
false positive rate of 
approx. 0.37 or 37%



Bloom Filter Space Usage

The space usage of Bloom Filters can be written as 1.44n*log2(1/𝜀) bits. If we 
wanted to compute the space complexity of a false positive rate of 1/32

1.44*n*log2(1/(1/32)) → 1.44*n*log2(32) → 1.44*n*5 → 7.2n bits

While we would want to minimize our space, we would have to allow for a higher 
false positive rate. This tradeoff has to be balanced correctly to make a Bloom 
Filter worth using.



Calculating A Bloom Filter Given A F.P. Rate

We can calculate all the parameters of our Bloom Filter given a desired false 
positive rate, 𝜀. Lets use 1/32 again. 

m, the length of our array would be 1.44n*log2(1/𝜀) 

k, our number of hash functions needed is log2(1/𝜀)

We find that m = 7.2n and k = 5



The Advantage of Bloom Filters

Bloom filters are faster than comparing every element, allowing for us to quickly 
determine if an element is a member of a set. It is small enough that it doesn’t 
consume excessive space, and it doesn’t store a copy of the elements. 

By cutting back on size and being easy to implement, Bloom Filters have become 
an important data structure.

Overall Bloom Filters with the right parameters can approximate membership with 
high probability, but let’s now show its application in a distributed system.



Bloom Filters in Distributed Systems

Say we have two nodes, A and B who have sets of elements that are the same. 
Assume that B wants to check if its missing any elements that A has. We call this 
the Set Reconciliation Problem.

The naive approach would be for A to send every element it has to B so that B can 
compare the elements to what it has. Obviously this is a bad idea, and consumes 
tons of bandwidth. We can solve this problem using Bloom Filters.

Just by looking at A and B’s Bloom Filters, 
we can tell something is different



Set Reconciliation with Bloom Filters 

Assume our previous problem where B wants to check if its missing any elements 
from A. We can have A send its Bloom Filter to B where B can do a reduction to 
see if its missing any elements. If any index is negative, we can say that B is 
missing that element, while if any index is positive we can say A is missing that 
element.



Problems with this Set Reconciliation

While we showed that a Bloom Filter cannot have a false negative, it still can have 
a false positive. The only way to avoid a false positive would be to create a larger 
Bloom Filter, which defeats the purpose of saving bandwidth. There are many 
solutions to this problem, such as Invertible Bloom Lookup Tables (IBLT), Counting 
Bloom Filters (CBF), etc. 

The main benefit is that we save a tremendous amount of bandwidth with only 
minor sacrifices. This tradeoff is acceptable, and with the other implementations of 
Bloom Filters, this problem can be made more efficient.



Conclusion

Bloom Filters are a powerful data structure, which can reduce the bandwidth 
usage between two nodes drastically. Along with solving this problem, Bloom 
Filters can be used in a number of applications. The Wikipedia article for Bloom 
Filters has 15 different applications and extensions, showing how versatile this 
idea is.



Sources

Data Structures and Algorithms (cs.DS); Distributed, Parallel, and Cluster 
Computing (cs.DC), arXiv:1910.07782 [cs.DS], https://arxiv.org/abs/1910.07782

Visit my site! matthewflammia.xyz

https://arxiv.org/abs/1910.07782

